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In this lecture, we explored the macromechanical

analysis of laminas, covering stress-strain relationships, 

stiffness and compliance matrices, and problem-based 

applications in composite engineering.

Introduction



By the end of this session, students will be able to:

- Understand the mechanical behavior of a unidirectional 

lamina.

- Analyze stress and strain relations in composite materials.

- Compute stiffness and compliance matrices.

- Apply stress transformation equations.

- Solve engineering problems related to composite laminas.

Objectives



- Deformation of Unidirectional Lamina

- Stress and Strain Analysis

- Elastic Moduli and Stiffness Matrices

- Compliance Matrices for Different Material Types

- Examples of Stress Analysis in Composite Laminas

Topics to be covered



Typical Laminate

FIGURE 2.1

Typical laminate made of three laminas



Deformation of Unidirectional Lamina

FIGURE 2.2
Deformation of square, isotropic plate
under normal loads



Deformation of Unidirectional Lamina
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FIGURE 2.2
Deformation of square, isotropic plate
under normal loads



Deformation of Unidirectional Lamina

FIGURE 2.3
Deformation of square, unidirectional lamina
with fibers at zero angle under normal loads



Deformation of Unidirectional Lamina
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FIGURE 2.2
Deformation of square, unidirectional lamina
with fibers at zero angle under normal loads



Deformation of Unidirectional Lamina

FIGURE 2.4
Deformation of square, unidirectional lamina
with fibers at an angle to normal loads



Deformation of Unidirectional Lamina

FIGURE 2.4
Deformation of square, unidirectional lamina
with fibers at an angle to normal loads
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FIGURE 2.5
Stresses on infinitesimal area
on an arbitrary plane
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Forces on an infinitesimal area
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Stress

,τ = τ yxxy
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FIGURE 2.7
Stresses on an infinitesimal cuboid



Strain

FIGURE 2.8
Normal and shearing strains on an
infinitesimal area in the x-y plane



Strain

u = u(x,y,z) = displacement in x-direction at point (x,y,z),

v = v(x,y,z) = displacement in y-direction at point (x,y,z),

w = w(x,y,z) = displacement in z-direction at point (x,y,z)
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Strain
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Strain

u = u(x,y,z) = displacement in x-direction at point (x,y,z),

v = v(x,y,z) = displacement in y-direction at point (x,y,z),

w = w(x,y,z) = displacement in z-direction at point (x,y,z)
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Strain

Substituting

1 < < 
y

u





1 < < 
y

v



 y

v
 = ε y





1- 
y

yx,u - y +y x,u
 + 

y

yx,v - y +y x,v 
+ 1  

0y
 =     

22
1/2

y






































→

)()()}()(lim


11

22
21

 -
y

u
 + 

y

v
 +   = ε

/

y










































Strain
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Strain
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Strain
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Elastic Moduli

FIGURE 2.9
Cartesian coordinates in 3-D



Elastic Moduli
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Elastic Moduli
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Example 2.1
A composite aerospace panel is subjected to an in-plane load due 
to aerodynamic forces. The panel consists of a unidirectional lamina 
with fibers aligned along the x-axis. Engineers need to determine the 
deformation behavior under applied stresses to ensure the safety of 
the structure.





Lamina and Laminate

FIGURE 2.1
Typical laminate made of three laminas



Compliance Matrix [S] for General Material
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Stiffness Matrix [C] for General Material

Stiffness matrix [C] has 36 constants
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Compliance Matrix [S] for Isotropic Materials
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Stiffness Matrix [C] for Isotropic Materials
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Compliance Matrix [S] for Isotropic Materials
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Stiffness Matrix [C] for Isotropic Materials
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Compliance Matrix [S] for 
Anisotropic Material























































































τ

τ

τ

σ

σ

σ

 

SSSSSS

SSSSSS

SSSSSS

SSSSSS

SSSSSS

SSSSSS

 = 

γ

γ

γ

ε

ε

ε

12

31

23

3

2

1

666564636261

565554535251

464544434241

363534333231

262524232221

161514131211

12

31

23

3

2

1



Stiffness Matrix [C] for Anisotropic Material

Stiffness matrix [C] has 36 constants
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Example 2.2
A structural engineer is designing a carbon-fiber-reinforced panel for 
an automobile chassis. To optimize the mechanical performance, 

the stiffness matrix of the lamina must be determined..





Monoclinic Materials

FIGURE 2.11
Transformation of coordinate axes for 1-2
plane of symmetry for a monoclinic material



Monoclinic Materials

FIGURE 2.12
Deformation of a cubic element
made of monoclinic material



Monoclinic Materials

FIGURE 2.13
A unidirectional lamina as a
monoclinic material with fibers
arranged in a rectangular array



Compliance Matrix [S] for Monoclinic Materials
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Stiffness Matrix [C] for Monoclinic Materials
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Orthotropic Materials

FIGURE 2.14
Deformation of a cubic element made
of  orthotropic material



Compliance Matrix [S] for Orthotropic Materials
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Stiffness Matrix [C] for Orthotropic Materials
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Compliance Matrix [S] for Orthotropic Materials
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Stiffness Matrix [C] for Orthotropic Materials
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Transversely Isotropic Materials

FIGURE 2.15
A unidirectional lamina as a
transversely isotropic material with
fibers arranged in a rectangular array



Compliance Matrix [S] for Transversely 
Isotropic Materials
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Stiffness Matrix [C] for Transversely 
Isotropic Materials
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Compliance Matrix [S] for Isotropic Materials
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Stiffness Matrix [C] for Isotropic Materials
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Compliance Matrix [S] for Isotropic Materials
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Stiffness Matrix [C] for Isotropic Materials
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Independent Elastic Constants

Material Type
Independent Elastic 

Constants

Anisotropic 21

Monoclinic 13

Orthotropic 9

Transversely Isotropic 5

Isotropic 2



Plane Stress Assumption

⚫ Upper and lower surfaces are free from external loads

 0,0, = 23313  =   0 = 

 ,   0 = 31233 0,0, == 
FIGURE 2.17
Plane stress conditions for a thin plate



Example 2.3

A lightweight composite wing structure experiences stress due to 
aerodynamic forces. The principal material directions of the 
composite differ from the applied loading. Engineers need to 
transform the stresses to the principal material coordinates for 
accurate failure analysis.







- The macromechanical analysis of a lamina

-Focusing on deformation under applied loads

-Stress-strain relations

-Stiffness/compliance matrices for composite materials.

Summery
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